J Fluoresc (2011) 21:653—-662
DOI 10.1007/s10895-010-0753-7

ORIGINAL PAPER

Rare Earth Centered Hybrid Materials: Tb*" Covalently
Bonded with La**, Gd*", Y?>* Through Sulfonamide Bridge

and Luminescence Enhancement

Kai Sheng - Bing Yan - Xiao-Fei Qiao

Received: 5 April 2010 /Accepted: 18 October 2010 /Published online: 30 October 2010

© Springer Science+Business Media, LLC 2010

Abstract The organic ligand 5-sulfosalicylic acid (SSA) is
grafted by (3-aminopropyl) triethoxysilane (APTES) to
achieve functionalized sulfonamide bridge (SSA-Si) which
can both coordinate to Ln*" to form luminescent center and
link inorganic Si-O network through hydrolysis and conden-
sation reaction with tetracthoxysilane (TEOS). Thus the
organic—inorganic hybrid is obtained with sol-gel method.
The organic polymer poly-methyl methacrylate (PMMA)
acts as another precursor is prepared through the direct
addition polymerization of MMA monomer in the presence
of the initiator BPO (benzoyl peroxide). The two kinds of
precursors are coordinated to the Ln*" simultaneously to
form organic—inorganic-polymeric hybrids which contain
both inorganic Si-O-Si net and organic periodic C—C chains.
In these complicated compounds we intercalate different
ratios of Tb®" and inert lanthanide ion (La**, Gd*", Y**) and
find that the introduction of the inert lanthanide ions can
enhance the luminescence intensity. This enhancement
phenomenon is called co-luminescence effect which is
studied by emission spectra in this paper.

Keywords Rare earth ion - Organic—inorganic-polymeric
hybrids - Energy transfer - Co-luminescence
Introduction

In recent years, hybrid organic—inorganic materials which
appear as new multifunctional materials have gained
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great interest due to their unusual features [1, 2]. The
organic—inorganic hybrids combine the organic composite
and the inorganic particle within nano scale, which holds
excellent physical and chemical properties that pure
organic or inorganic phase did not have [3—5]. Among
the various approaches, the sol-gel process based on
hydrolysis and poly-condensation reactions of metal
alkoxides is a convenient method to prepare inorganic—
organic hybrid materials with unique properties both in
terms of chemical composition and physical microstruc-
ture [6—8]. In addition, the mild chemical conditions
allowed by the sol-gel process provide a versatile access
to form organic—inorganic nanocomposites.

Rare earth complexes have been well known as an
important ingredient in luminescent materials for their
fascinating properties such as sharp and intense emission
bands which is ascribed to the unfilled f-f electronic
transitions of lanthanide ions, long radiative lifetimes and
potential high internal quantum efficiency [9, 10]. In these
systems, organic components can absorb abundant energy
under ultraviolet radiation and transferred the energy to
lanthanide ions, so called “antenna effect”, and consequent-
ly sensitize the lanthanide ions for characteristic lumines-
cence. However, the intrinsic disadvantages such as poor
thermal stability and low mechanical strength restrict their
applications [8, 11]. Therefore, many researchers have been
attracted to the incorporation of small lanthanide complexes
into inert matrices to obtain sol-gel derived rare earth
organic—inorganic hybrid materials and overcome these
shortcomings [6—8, 12—14]. So far, there have been two
main classes for rare earth organic—inorganic hybrid
materials according to the mutual interaction between
organic phase and inorganic host [15]. Class I hybrids are
prepared through direct dispersion or dissolution of the rare
earth complex into matrix. Although the rare earth complex
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and the matrix can be chosen independently, it is difficult to
achieve hybrids with high luminescence intensity and
homogeneity of the two phases which is attributed to the
weak physical interaction (such as hydrogen bonding, van
der Waals force or electrostatic forces) and incompatibility
of the two parts [6-9]. While Class II hybrids obtained by
linking the two parts with covalent bonds can realize
molecular-level complex, thus the leaching or clustering of
the emitting center can be avoided, higher concentration of
rare earth complexes and homogeneity of the two phases
can be obtained [12—14]. As a consequence, many research
groups have dedicated to construct molecular based sol-gel
derived rare earth organic—inorganic hybrid materials [12—
14, 16-24].

Organic—inorganic hybrids doped with rare earth com-
plexes have shown as excellent luminescent materials since
the characteristic f-f electronic transition have been studied
extensively. Many researchers mainly focused on lumines-
cence of single rare earth ions while few reports have been
unfolded for co-luminescence effect of multi rare earth ions
[25-27]. When La**, Gd*", Lu®", Y*" are incorporated with
Eu’" or Tb*" at appropriate molar ratio, a luminescence
enhancement phenomenon is found and they also found
that all the enhancing ions have a stable electronic
configuration such as La*", Y**, Gd* and Lu**, the 4f
shells of which are empty, half-filled and full, respectively
[25-27]. In this paper, we not only incorporate these inert
rare earth ions into Tb>" organic—inorganic hybrids but also
immobilize organic polymer in the hybrid system (named
organic—inorganic-polymeric hybrids). The organic poly-
mer PMMA possessing attractive properties such as
transparency, lightweight, are easily to be fabricated and
conveniently to be controlled various optical parameters,
and it is proved that the higher luminescence intensity and
more regular morphology of the resulting material we
obtained [28-31]. Here, we synthesize a series of molecular
based rare earth organic—inorganic hybrids and rare earth
organic—inorganic polymeric hybrids with different ratios of
inert rare earth ions and active rare earth ions (Tb>"). The
results reveal that the organic—inorganic-polymeric hybrids
exhibit higher emission intensity, and the co-existence of
inert rare earth ions can make the luminescence better.

Experimental

Chemicals

Terbium nitrate is obtained by dissolving corresponding
oxides in concentrated nitric acid. 5-sulfosalicylic acid
(SSA) is provided by Lancaster Synthesis Ltd. 3-

aminopropyltriethoxysilane (APTES) is supported by Alfa
Company. The tetracthoxysilane (TEOS) is supplied by
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Aldrich. Methyl methacrylate (MMA) is purchased from
Shanghai chemical plant. The common solvents are
purchased from China National Medicine Group (A.P.).
Other starting reagents are used as received.

Synthesis of the Precursor SSA-Si

One mmol SSA is first dissolved in refluxing anhydrous
tetrahydrofuran (THF) by stirring, and then 0.5 mmol thionyl
chloride is added to the solution by drops. The whole mixture is
refluxing at 120 °C for 3 h under argon in a covered flask. Then
1 mmol APTES is added in the solution and are refluxing at
80 °C for 6 h. After cooling, the solvent is removed using a
rotary vacuum evaporator, and then the residual is ished with
20 ml of hexane three times. A yellow oil is obtained (see
Scheme 1). Yield: 75 %. Anal. Calcd. for C1sH,70gNSSi (%):
C 45.59, H 6.46, N 3.32; Found: C 44.53, H6.17, N 3.26. 'H
NMR (CDCl3, 400 MHz): § 0.53(t, 2H, CH,Si), 1.38(t, 9H,
CHj3), 1.62(m, 2H, CH,CH,CH,), 3.26(m, 2H, NHCH,), 3.86
(q, 6H, SiOCH,), 7.39(d, 1H,~CsH,), 7.56(d, 1H,—CsH.,),
7.95(t, 1H, NH), 8.32(d, 1H,~C4H,), 11.78(s, 1H, OH), 12.10
(s, 1H, COOH).

Synthesis of Organic Polymer PMMA

One mmol Methyl methacrylate is weighed and transferred
into separating funnel, and then it ished with 0.1 mol/L
sodium hydroxide solutions to remove the inhibitor. After
oscillating for 5 min and standing for 2 h, separation of the
water phase and upper oil phase is carried on. The residual
water is removed with anhydrous copper sulfate. After
purification and reduced pressure distillation under nitrogen
atmosphere, the monomer is injected into covered three
mouth flask with benzoyl peroxide BPO as an initiator. The
mixture is dissolved in blend-solvent (BS) of toluene and
ethyl acetate and maintained at 70 °C for 8 h under flowing
high purity nitrogen. After removing of the solvent, a
canary yellow and stringy liquid is obtained. The product is
dried in vacuum desiccator after recrystallization using
methanol and anhydrous ether.

Synthesis of the Organic—Inorganic Hybrids with Si-O
Networks

SSA-Si is dissolved in DMF (dimethylformamide). Then a
stoichiometric amount of Tb(NOj;);-:6H,O (1 mmol/L,
EtOH) is added to the solution with stirring drop by drop.
After 2 h, a stoichiometric amount of tetracthoxysilane
(TEOS) and one drop of diluted hydrochloric acid are put
into the solution to promote hydrolysis. The molar ratio of
Tb(NOs3);-6H,O/SSA-Si/TEOS/H,O0 is 1: 3: 6: 24. Then we
get the hybrid material after removing the solvent at 80 °C
in 5 days (see Scheme 1).
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Scheme 1 The synthesis route OH OH OH
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Synthesis of the Organic—Inorganic-Polymeric Hybrids

Similar to the method above: SSA-Si and the organic polymer
PMMA are dissolved in DMF simultaneously and then Tb
(NO3)3:6H,0 is added . Then a stoichiometric amount of
TEOS and HCl is put into the solution. The mole ratio of Tb
(NO3);-6H,0/SSA-Si/MMA/TEOS/H,0 is 1: 3: 1: 6: 24.
After gelation in an oven at 80 °C in a few days we obtained
the hybrids containing not only inorganic Si-O networks but
also organic C—C chains (see Schemes 1 and 2).

Using the same method, we prepared the Tb®" and inert
lanthanide ions (La**, Gd**, Y*") co-hybrid materials with
and without polymer by mixing Tb*" and inert ions at
different ratios. These hybrids are named Tb-Gd31, Tb-Gd21,
Tb-Gd11, Tb-Gd12, Tb-Gd13, PM-Tb-La31, PM-Tb-La2l
and so on (here the number means the molar ratio of Tb to Gd,
i.e. Tb-Gd31 referes to Tb: Gd =3: 1) (see Schemes 1 and 2).

Physical Characterization
All measurements are performed at room temperature.

Infrared spectra are recorded on a Nexus 912 AO439 FT-
IR spectrophotometer. We mixed the compound with the

dried potassium bromide (KBr) and then pressed into
pellets. The spectra are collected over the range 4000—
400 cm™' by averaging 32 scans at a maximum resolution
of 8 cm . "H NMR spectra are recorded in CDCl; on a
Bruker AVANCE-400 spectrometer with tetramethylsilane
(TMS) as an internal reference. The ultraviolet-visible
diffuse reflection spectra of the powder samples are
recorded by a BWS003 spectrophotometer. X-ray powder
diffraction patterns are recorded using a Rigaku D/max-rB
diffractometer system equipped with a Cu anode in a 20
range from 10° to 70°. The luminescence spectra are
obtained on a RF-5301 spectrophotometer equipped with a
stablespec-xenon lamp (450 W) as the light source. The
microstructures are checked by scanning electronic micros-
copy (SEM, Philip XL-30).

Results and Discussion
APTES Functionalized Molecular Precursor SSA-Si

Figure la shows the Fourier transform infrared spectra of
the free ligand SSA (A) and the precursor SSA-Si (B). It
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Fig. 1 The Fourier transform infrared spectra (a) and the ultraviolet
absorption spectra (b) of the free ligand SSA (4) and the precursor
SSA-Si (B)

can be seen from Fig. la, there is a strong band centered at
3,390 cm ' which is ascribed to the stretching vibration
of —OH. And this absorption is taken place by a broad
scattered band centered at about 3,183 ¢cm ' in Fig. 1b,
which indicates the hydroxyl groups become associated
and consequently result in the weak absorption of N-H
stretching vibration is covered. The peaks at 1,673 cm !
and 1,670 cm ' in Fig. la and b are corresponded to
stretching vibration of C = O. The three continuous peaks
at about 2,937 cm ' which is originated from the three
methylene groups of APTES and the new peak appeared at
1,587 ¢cm ' which derives from the in-plain bending
vibration of N-H confirm that the silane coupling reagent
3-aminopropyltriethoxysilane is successfully grafted onto
organic free ligand SSA. Furthermore, the asymmetric
stretching vibration of Si-O is evidenced by the peak

locating at 1,083 cm .

Figure 1b shows the ultraviolet absorption spectra of the
free ligand SSA (A) and the precursor SSA-Si (B). From
the curve, we can see three bands (marked 1, 2, 3) which
locates at 207, 235 and 306 nm for A (for B, they are 210,
235 and 306 nm) in both spectra. The strongest absorption
peak 1 is due to the 7m—7t* electronic transition and the
peaks 2 and 3 are ascribed to the superposition of the
electronic cloud. Comparing the absorption spectrum of
SSA-Si (B) with that of SSA (A), we can see a small blue-
shift of the major 7—7t electronic transitions (from 210 to
207 nm) which indicate that the modification of SSA result
in the change of the whole electronic conjugating system.

Silica Based Hybrid Materials

Figure 2 presents the X-ray diffraction (from 10 to 70°)
spectra of the selected hybrid materials: Tb hybrids (A), Tb-
Lall hybrids (B), PM-Tb-Lall hybrids (C), which reveals
that all the obtained hybrid materials are amorphous in the
whole range. All the materials exhibit the similar XRD
patterns with a broad peak centered at around 23° which is
the characteristic diffraction of amorphous siliceous back-
bone material [32-34]. By comparison with the three
hybrids, there is no new diffraction peaks for the pure rare
earth complex or PMMA show that the introduction of the
macromolecular ligands in the hybrid system did not bring
changes on the disordered silicon skeleton but make the
overall system more disordered. Furthermore, there are
many narrow weak peaks in these samples which corre-
spond to the incomplete hydrolysis-condensation of the
excessive TEOS molecules. TEOS molecules can carry on
hydrolysis-condensation process themselves or with silane
coupling reagent. If the hydrolysis-condensation process of
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Fig. 2 The X-ray diffraction spectra of the selected hybrid materials

(4 denotes Tb hybrids, B denotes Tb-Lall hybrids and C denotes PM-
Tb-La 11 hybrids)
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the excessive TEOS molecular takes place among them-
selves, the ordered Si-O network can form a better crystal
state. Then the narrow peaks appear. But the small amount
of the ordered Si-O network brings the weak intensity. In
addition, neither of the sample exhibit the measurable
amounts of the phase corresponding to the free ligands or
the free salts which can support that the formation of the
covalently bonded hybrids.

Figure 3 exhibits the ultraviolet-visible diffuse reflection
absorption spectra of the selected hybrid materials: Tb
hybrids (A), Tb-Lall hybrids (B), Tb-Gd11 hybrids (C),
Tb-Y11 hybrids (D). As can be seen obviously in Fig. 3,
there is a large broad absorption band in each hybrids
which is attributed to the t—7t* electronic transition of the
aromatic ring in the hybrid system. It is worth noting that
the large broad band overlaps (from 240 to 500 nm) with
the excitation spectra (from 270 to 350 nm). These energy
can be transferred to lanthanide ions through “antenna
effect” and sensitize the lanthanide ions. Furthermore, there
exist some obvious inverse peaks in each hybrids, at 489,
545, 586 and 623 nm, respectively, which are
corresponding to the characteristic emission of terbium
ions (Fig. 4). The intensity of the Tb-Gd11 Hybrids is the
highest and there exists splitting phenomena on the main
inverse peak at 545 nm which is also in accord with the
emission spectra of the hybrids (see Fig. 4).

Photoluminescence Properties

To investigate the co-luminescence effect caused by the
interaction between inert rare earth ions and active rare earth
ions, we firstly incorporate different inert ions La>*, Gd**, Y**
in Tb>" organic—inorganic hybrid system with the same ratio
1 : 1. As shown in Fig. 4, the excitation and emission spectra
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Fig. 3 The ultraviolet-visible diffuse reflection absorption spectra of
the selected hybrid polymeric materials: Tb hybrids (4), Tb-Lall
hybrids (B), Tb-Gd11 hybrids (C), Tb-Y 11 hybrids (D), respectively
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Fig. 4 The luminescent excitation and emission spectra of the hybrid
materials (4 represents Tb hybrids, B represents Tb-Lall, C represents
Tb-Gd11 and D represents Tb-Y11, respectively)

of these organic—inorganic hybrids are measured on solid
powders at room temperature. All the excitation spectra
which is obtained by monitoring the maximum emission line
of terbium ion (°D,4-"Fs) exhibit a broad band in the range of
270-350 nm (mentioned above) which is assigned to the
transition of the organic ligand from the ground state S, to
the excited state S; [35-37]. Moreover, the blue-shift of the
maximum excitation wavelength comparing the hybrids Tb-
Lall (B), Tb-Gd11 (C), Tb-Y11 (D) with the Tb hybrids (A)
demonstrate that the environment surrounding Tb>* has been
changed with the introduction of the rare earth inert ions. The
emission spectra of the hybrid materials in Fig. 4 are
obtained by monitoring the optimal excitation wavelength
320 nm for B, C and D, while 340 nm for A. It can be
observed that all the hybrids exhibit characteristic Tb>*
cation emission lines 486, 542, 581 and 618 nm
corresponding to *Ds—'F; (J=6-3) transition. In addition,
the dominant *D,—'F, green emission intensity (arbitrary
units / a.u.) of the Tb-Gd11 hybrids is stronger than other
hybrids which suggest that the co-luminescence effect
brought by interaction of inert ions Gd®>* and active ions
Tb>" occur. The luminescence intensity of Tb-Gdl1 (a.u.,
219.1) is more than 1.5 times than Tb hybrid (a.u., 143.9).
The mechanism of this co-luminescence enhancement effect
will be explained later.

For the sake of finding a best ratio between Tb>" and
Gd** for luminescence in this molecular based organic—
inorganic hybrid system, we further prepare Tb-Gd31 (A),
Tb-Gd21 (B), Tb-Gd11 (C), Tb-Gd12 (D), Tb-Gd13 (E),
and Tb hybrids (F) as shown in Fig. 5. The results show
that all the Tb-Gd co-exist hybrids exhibit higher intensity
than hybrid system containing Tb*>* only for both excitation
and emission spectra. Meanwhile, for the co-exist hybrid
system all the excitation peaks shift from 340 to 320 nm
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and each of the characteristic emission peak split into
double peaks. From the point of view above, we can come
to a conclusion that the SSA chelated terbium hybrids
exhibit good luminescence characteristics and this is much
enhanced when the inert ions Gd*" is incorporated into this
Tb*>* hybrid system in molecular level. Comparing with Tb-
Gd co-doped system from Fig. 5, for A, B and E, the
excitation and emission lines are overlapped and Tb-Gd 12
hybrids exhibit strongest intensity (a.u., 507.9 more than
3.5 times comparing with Tb hybrid) than others in the
silica based organic—inorganic system. The luminescence
intensity do not increase along with the increasing
concentration of Tb>" in the co-doped system which can
also sustain the fact that co-luminescence effect arise.
Because the organic polymer such as PMMA, PVPD
(poly-vinylpyridine) and PMAA (poly-methacrylic acid)
can facilitate the luminescence properties in sol-gel derived
hybrids through replacement of coordinated water molecu-
lar and efficient energy transfer [30, 31, 38], we prepare co-
doped organic—inorganic-polymeric hybrids containing
polymer PMMA through incorporating inert ions La®",
Gd®>", Y*" in Tb®>" hybrid system. The excitation and
emission spectra of these hybrids are shown in Fig. 6. They
are PM-Tb (A), PM-Tb-Lall (B), PM-Tb-Gd11 (C), PM-
Tb-Y11 (D), respectively. The relative intensity of the
organic—inorganic-polymeric hybrids increases according to
the sequence D < A < C < B, and the emission intensities of
B (a.u., 677.0) are much stronger than those of A (a.u.,
209.2) and C (a.u., 302.5). Corresponding to the excitation
spectrum, the luminescent intensities of hybrids changed
with the same sequence. Moreover, comparing to the Tb
hybrid without polymer, the luminescence intensity of PM-
Tb hybrid (a.u., 209.2) is much enhanced indicating the

600 /f

Relative Intensity (a.u.)

Wavelength (nm)

Fig. 5 The luminescent excitation and emission spectra of the hybrid
materials (4 represents Tb-Gd31, B represents Tb-Gd21, C represents
Tb-Gdl11, D represents Tb-Gd12, E represents Tb-Gd13 and F
represents Tb hybrids, respectively)
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Fig. 6 The luminescent excitation and emission spectra of the hybrid
materials (4 represents PM-Tb hybrids, B represents PM-Tb-Lall, C
represents PM-Tb-Gd11 and D represents PM-Tb-Y11, respectively)

efficient energy transfer from organic polymer PMMA to
Tb*>" ions.

Similarly, for the sake of finding a best ratio between
Tb*" and La" in this molecular based organic—inorganic-
polymeric hybrid system, we further prepare PM-Tb-La31
(A), PM-Tb-La21 (B), PM-Tb-Lall (C), PM-Tb-Lal2
(D), PM-Tb-Lal3 (E), and PM-Tb hybrids (F) as shown in
Fig. 7. The relative luminescence intensity of the Tb-La
co-doped organic—inorganic-polymeric hybrids increases
according to the sequence E (a.u., 82.7) <D (a.u., 163.9) <
F (a.u., 209.2) <C (a.u., 677.0) < B (a.u., 773.2) < A (a.u.,
1052.3), that is, the increase of luminescence intensity
alters along with the concentration of Tb>" except F. This
result shows that there exist energy transfer from organic
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Fig. 7 The luminescent excitation and emission spectra of the hybrid
materials (4 represents PM-Tb-La31, B represents PM-Tb-La2l, C
represents PM-Tb-Lall, D represents PM-Tb-Lal2, E represents PM-
Tb-Lal3 and F represents PM-Tb hybrids, respectively)
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polymer PMMA to active Tb>" and when Tb>" contents
become bigger in some extent the Tb-La co-doped
organic—inorganic-polymeric hybrid system exhibit higher
luminescence intensity.

Luminescence and Co-luminescence Mechanism

The luminescence behavior is mainly caused by the formation
of luminescent center: SSA chelated with active Tb>*. SSA
which is considered as excellent ligand possesses versatile
coordination modes and can well sensitize lanthanide
luminescence [39]. As we know, there are two main steps
in the luminescence process: energy transfer from ligand to
lanthanide center and reverse energy transition caused by
thermal deactivation [40—42]. The energy transfer efficiency
is dependent on the intrinsic energy difference (AE (T, Ln®
™) between the lowest triplet state level of ligands and the
resonant energy level of the central Ln®". Nevertheless, we
can decrease the non-radiation thermal deactivation mainly
caused by hydroxyl vibration of water molecule around Ln’
*. Thus, the luminescent center is introduced to the Si-O
network via sol-gel method and organic polymer (PMMA
for example) which can coordinate to Ln®" is proved to
improve the luminescence intensity through replacement of
coordinated water molecule.

It is clear that Gd*>* has a stable half-filled electronic
configuration and it is hard for f-f transition. La®" is
impossible for f-f transition since it does not have 4f
electrons. Therefore, gadolinium and lanthanum com-

Fig. 8 The scanning electronic
micrograph of the selected hy-
brid materials (4 for binary Tb
hybrids, B for Tb-Gd 11, C for
ternary PM-Tb hybrids and D
for PM-Tb-La 11, respectively)
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pound can not luminance. Whereas, when these inert
lanthanide ions are mixed with the active Tb®" together
and then are added to silica based molecular hybrid system
at appropriate ratio we found that the emission intensity of
the co-doped system is much enhanced. It is considered
that the Tb>" and inert ions coexist in the sol-gel derived
hybrid systems at molecular level through the process of
hydrolysis and poly-condensation. Because both the Tb**
and the inert ions are chelated by SSA-Si which is
chemically bonded to the inorganic Si-O network and the
distance between Tb>" and inert ion make the intramolec-
ular energy transfer from inert center to active center
possible. Furthermore, the active luminescent center is
surrounded by the inert part, which make the quencher of
ion—ion interaction of Tb>" itself impossible. Besides, the
surrounding inert part of active center can form a cage
which can not only prevent energy loss but also protect the
luminescent center from colliding with water molecules.
Therefore, the luminescence intensity is much enhanced in
the presence of the inert ions.

However, in organic—inorganic hybrid system the Tb-Gd
co-existed system shows the strongest luminescence intensity
while in organic—inorganic-polymeric hybrid system the Tb-
La co-exist system exhibit strongest luminescence. Such
difference can be considered in the following way. In
organic—inorganic hybrid system, Tb-SSA-Si complex and
Gd-SSA-Si complex is connected by the Si-O network.
Because of the best energy matches between the excited
energy level of Gd-SSA-Si complex and the resonance energy
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level of the triplet states of Tb-SSA-Si complex, the Gd-SSA-
Si complex act as an energy-insulating sheath and transferred
the absorped energy through covalent Si-O bond to the Tb-
SSA-Si complex for radiation. After the introduction of the
organic polymer PMMA, both Tb*>* ions and inert ions can
not only chelate with SSA-Si but also coordinate to the long
organic C—C chains of PMMA (Scheme 1 III). The organic
polymer PMMA can not only promote adsorption but also
change the conformation of the hybrid system, resulting in
the difference of energy levels between the Tb®" complex
and inert ions complex. Besides, the distances between the
Tb>" complex and inert ions complex is closer by PMMA.
For the exact different mechanism between organic—inorgic
and organic—inorganic-polymeric system, the continuous
study is necessary in order to thoroughly understand the
energy transfer process.

Microstructure of the Hybrids

The microstructure of the selected hybrid materials are
shown in Fig. 8 (A for binary Tb hybrids, B for Tb-Gd 11,
C for ternary PM-Tb hybrids and D for PM-Tb-La 11).
From all the images, we can see the obvious distinction
between the binary and the ternary hybrid materials. For
both kinds of hybrids, the phase separation phenomena do
not take place in the whole experimental process because
the precursor SSA-Si acts as a functional molecular bridge
linking the inorganic and organic component by covalent
bonds. The ternary hybrid materials exhibit the uniform,
regular and ordered microstructure with the dendritic stripe
on the surface, which indicate that the self-assemble
process occurred with the introduction of the polymer.
Such microstructure of both kinds of hybrid materials
can be explained in the following way. For the binary
hybrids, the lanthanide ions are chelated to the precursor
SSA-Si at the beginning to form the luminescent center.
Then the hydrolysis and condensation process appears to be
predominant when the TEOS is added in. This process
occurred and terminated randomly among SSA-Si itself or
between SSA-Si and TEOS within sol-gel mechanism.
Because of the rigidity of the luminescent center is weak
and easily be affected by ambient Si-O networks, which
result in the stochastic, unfixed and indefinite surface
morphology. However, for the ternary hybrid materials,
the generation of the luminescent center took place among
lanthanide ions, SSA-Si and PMMA. The two kinds of
precursors coordinated to lanthanide ions simultaneously.
Thus, not only the rigidity of the compound is increased but
also the periodic organic polymer played a role as a
template that the extended order of the macromolecular
chain or network could provide a new sort of organization
to hydrolysis and condensation process along the polymer
backbone, which lead to the ordered microstructure.

Conclusions

A series of silica based molecular hybrids incorporating
different inert lanthanide ions (La3 * Gd**, Y*") into active
Tb*" with different ratio are prepared as transparent
monoliths by sol-gel process. All the samples are totally
amorphous and exhibit strong luminescence intensity.
Moreover, the selected ternary hybrids with long organic
C-C chains show more regular microstructure than the
bianry hybrids. Besides, in organic—inorganic hybrid
system Tb-Gd coexist hybrids exhibit the strongest lumi-
nescence intensity while in organic—inorganic-polymeric
hybrid system the Tb-La coexist hybrids exhibit the highest
luminescence. When the inert ions incorporating within
appropriate ratio the luminescence enhancement (so called
“co-luminescence effect”) take place and this phenomenon
is discussed in detail.
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